August 9, 2021
In two-player competitive sports, such as boxing and fencing, athletes often demonstrate efficient and tactical movements during a competition. In this paper, we develop a learning framework that generates control policies for physically simulated athletes who have many degrees-of-freedom. Our framework uses a two step-approach, learning basic skills and learning bout-level strategies, with deep reinforcement learning, which is inspired by the way that people learn competitive sports. We develop a policy model based on an encoder-decoder structure that incorporates an autoregressive latent variable, and a mixture-of-experts decoder. To show the effectiveness of our framework, we implemented two competitive sports, boxing and fencing, and demonstrate control policies learned by our framework that can generate both tactical and natural-looking behaviors. We also evaluate the control policies with comparisons to other learning configurations and with ablation studies.
Publisher
SIGGRAPH 2021
Research Topics
Reinforcement Learning
Graphics
December 05, 2020
Deepak Pathak, Abhinav Gupta, Mustafa Mukadam, Shikhar Bahl
December 05, 2020
December 07, 2020
Yuandong Tian, Qucheng Gong, Tina Jiang
December 07, 2020
March 13, 2021
Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, Andre Biedenkapp, Kurtland Chua, Frank Hutter, Roberto Calandra
March 13, 2021
October 10, 2020
Luis Pineda, Sumana Basu, Adriana Romero,Roberto CalandraRoberto Calandra, Michal Drozdzal
October 10, 2020
December 05, 2020
Andrea Tirinzonin, Matteo Pirotta, Marcello Restelli, Alessandro Lazaric
December 05, 2020
Foundational models
Latest news
Foundational models