Graphics

Reinforcement Learni9ng

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports

August 9, 2021

Abstract

In two-player competitive sports, such as boxing and fencing, athletes often demonstrate efficient and tactical movements during a competition. In this paper, we develop a learning framework that generates control policies for physically simulated athletes who have many degrees-of-freedom. Our framework uses a two step-approach, learning basic skills and learning bout-level strategies, with deep reinforcement learning, which is inspired by the way that people learn competitive sports. We develop a policy model based on an encoder-decoder structure that incorporates an autoregressive latent variable, and a mixture-of-experts decoder. To show the effectiveness of our framework, we implemented two competitive sports, boxing and fencing, and demonstrate control policies learned by our framework that can generate both tactical and natural-looking behaviors. We also evaluate the control policies with comparisons to other learning configurations and with ablation studies.

Something Went Wrong
We're having trouble playing this video.

Something Went Wrong
We're having trouble playing this video.

Download the Paper

AUTHORS

Written by

Jungdam Won

Deepak Gopinath

Jessica Hodgins

Publisher

SIGGRAPH 2021

Research Topics

Reinforcement Learning

Graphics

Related Publications

December 05, 2020

Robotics

Reinforcement Learni9ng

Neural Dynamic Policies for End-to-End Sensorimotor Learning

Deepak Pathak, Abhinav Gupta, Mustafa Mukadam, Shikhar Bahl

December 05, 2020

December 07, 2020

Reinforcement Learni9ng

Joint Policy Search for Collaborative Multi-agent Imperfect Information Games

Yuandong Tian, Qucheng Gong, Tina Jiang

December 07, 2020

March 13, 2021

Reinforcement Learni9ng

On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, Andre Biedenkapp, Kurtland Chua, Frank Hutter, Roberto Calandra

March 13, 2021

October 10, 2020

Computer Vision

Reinforcement Learni9ng

Active MR k-space Sampling with Reinforcement Learning

Luis Pineda, Sumana Basu, Adriana Romero,Roberto CalandraRoberto Calandra, Michal Drozdzal

October 10, 2020

December 05, 2020

Reinforcement Learni9ng

An Asymptotically Optimal Primal-Dual Incremental Algorithm for Contextual Linear Bandits

Andrea Tirinzonin, Matteo Pirotta, Marcello Restelli, Alessandro Lazaric

December 05, 2020

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.