August 12, 2024
Mixed integer linear programs (MILP) are flexible and powerful tools for modeling and solving many difficult real-world combinatorial optimization problems. In this paper, we propose a novel machine learning (ML)-based framework ConPaS that learns to predict solutions to MILPs with contrastive learning. For training, we collect high-quality solutions as positive samples. We also collect low-quality or infeasible solutions as negative samples using novel optimization-based or sampling approaches. We then learn to make discriminative predictions by contrasting the positive and negative samples. During testing, we predict and fix the assignments for a subset of integer variables and then solve the resulting reduced MILP to find high-quality solutions. Empirically, ConPaS achieves state-of-the-art results compared to other ML-based approaches in terms of the quality of and the speed at which solutions are found.
Publisher
ICML
Research Topics
Core Machine Learning
December 12, 2024
December 12, 2024
December 12, 2024
Mubashara Akhtar, Omar Benjelloun, Costanza Conforti, Luca Foschini, Pieter Gijsbers, Joan Giner-Miguelez, Sujata Goswami, Nitisha Jain, Michalis Karamousadakis, Satyapriya Krishna, Michael Kuchnik, Sylvain Lesage, Quentin Lhoest, Pierre Marcenac, Manil Maskey, Peter Mattson, Luis Oala, Hamidah Oderinwale, Pierre Ruyssen, Tim Santos, Rajat Shinde, Elena Simperl, Arjun Suresh, Goeffry Thomas, Slava Tykhonov, Joaquin Vanschoren, Susheel Varma, Jos van der Velde, Steffen Vogler, Carole-Jean Wu, Luyao Zhang
December 12, 2024
December 10, 2024
Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky Chen, David Lopez-Paz, Heli Ben Hamu, Itai Gat
December 10, 2024
December 09, 2024
Itai Gat, Tal Remez, Felix Kreuk, Ricky Chen, Gabriel Synnaeve, Yossef (Yossi) Adi, Yaron Lipman, Neta Shaul
December 09, 2024
Foundational models
Latest news
Foundational models