Core Machine Learning

Theory

Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors

April 13, 2021

Abstract

Naively trained neural networks tend to experience catastrophic forgetting in sequential task settings, where data from previous tasks are unavailable. A number of methods, using various model expansion strategies, have been proposed recently as possible solutions. However, determining how much to expand the model is left to the practitioner, and often a constant schedule is chosen for simplicity, regardless of how complex the incoming task is. Instead, we propose a principled Bayesian nonparametric approach based on the Indian Buffet Process (IBP) prior, letting the data determine how much to expand the model complexity. We pair this with a factorization of the neural network’s weight matrices. Such an approach allows the number of factors of each weight matrix to scale with the complexity of the task, while the IBP prior encourages sparse weight factor selection and factor reuse, promoting positive knowledge transfer between tasks. We demonstrate the effectiveness of our method on a number of continual learning benchmarks and analyze how weight factors are allocated and reused throughout the training.

Download the Paper

AUTHORS

Written by

Nikhil Mehta

Kevin J Liang

Vinay K Verma

Lawrence Carin

Publisher

AISTATS 2021

Research Topics

Core Machine Learning

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 08, 2022

Theory

Beyond neural scaling laws: beating power law scaling via data pruning

Ari Morcos, Shashank Shekhar, Surya Ganguli, Ben Sorscher, Robert Geirhos

November 08, 2022

August 08, 2022

Core Machine Learning

Opacus: User-Friendly Differential Privacy Library in PyTorch

Ashkan Yousefpour, Akash Bharadwaj, Alex Sablayrolles, Graham Cormode, Igor Shilov, Ilya Mironov, Jessica Zhao, John Nguyen, Karthik Prasad, Mani Malek, Sayan Ghosh

August 08, 2022

December 07, 2020

Core Machine Learning

Adversarial Example Games

Avishek Joey Bose, Gauthier Gidel, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton

December 07, 2020

November 03, 2020

Core Machine Learning

Robust Embedded Deep K-means Clustering

Rui Zhang, Hanghang Tong Yinglong Xia, Yada Zhu

November 03, 2020

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.