Computer Vision

ML Applications

ContactPose: A Dataset of Grasps with Object Contact and Hand Pose

August 23, 2020

Abstract

Grasping is natural for humans. However, it involves complex hand configurations and soft tissue deformation that can result in complicated regions of contact between the hand and the object. Understanding and modeling this contact can potentially improve hand models, AR/VR experiences, and robotic grasping. Yet, we currently lack datasets of hand-object contact paired with other data modalities, which is crucial for developing and evaluating contact modeling techniques. We introduce ContactPose, the first dataset of hand-object contact paired with hand pose, object pose, and RGB-D images. ContactPose has 2306 unique grasps of 25 household objects grasped with 2 functional intents by 50 participants, and more than 2.9 M RGB-D grasp images. Analysis of ContactPose data reveals interesting relationships between hand pose and contact. We use this data to rigorously evaluate various data representations, heuristics from the literature, and learning methods for contact modeling. Data, code, and trained models are available at https://contactpose.cc.gatech.edu.

Download the Paper

AUTHORS

Written by

Samarth Brahmbhatt

Chengcheng Tang

Christopher D. Twigg

Charles C. Kemp

James Hays

Publisher

European Conference on Computer Vision (ECCV)

Research Topics

Computer Vision

Human and Machine Intelligence

Augmented Reality / Virtual Reality

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.