Compact Graph Structure Learning via Mutual Information Compression

May 06, 2022


Graph Structure Learning (GSL) recently has attracted considerable attentions in its capacity of optimizing graph structure as well as learning suitable parameters of Graph Neural Networks (GNNs) simultaneously. Current GSL methods mainly learn an optimal graph structure (final view) from single or multiple information sources (basic views), however the theoretical guidance on what is the optimal graph structure is still unexplored. In essence, an optimal graph structure should only contain the information about tasks while compress redundant noise as much as possible, which is defined as "minimal sufficient structure", so as to maintain the accuracy and robustness. How to obtain such structure in a principled way? In this paper, we theoretically prove that if we optimize basic views and final view based on mutual information, and keep their performance on labels simultaneously, the final view will be a minimal sufficient structure. With this guidance, we propose a Compact GSL architecture by MI compression, named CoGSL. Specifically, two basic views are extracted from original graph as two inputs of the model, which are refinedly reestimated by a view estimator. Then, we propose an adaptive technique to fuse estimated views into the final view. Furthermore, we maintain the performance of estimated views and the final view and reduce the mutual information of every two views. To comprehensively evaluate the performance of CoGSL, we conduct extensive experiments on several datasets under clean and attacked conditions, which demonstrate the effectiveness and robustness of CoGSL.

Download the Paper


Written by

Hugo Chen

Chuan Shi

Lingfei Wu

Nian Liu

Xiao Wang

Xiaojie Guo



Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.