COMPUTER VISION

CORE MACHINE LEARNING

Common Corruption Robustness of Point Cloud Detectors: Benchmark and Enhancement

September 22, 2023

Abstract

Object detection through LiDAR-based point cloud has recently been important in autonomous driving. Although achieving high accuracy on public benchmarks, the state-of-the-art detectors may still go wrong and cause a heavy loss due to the widespread corruptions in the real world like rain, snow, sensor noise, etc. Nevertheless, there is a lack of a large-scale dataset covering diverse scenes and realistic corruption types with different severities to develop practical and robust point cloud detectors, which is challenging due to the heavy collection costs. To alleviate the challenge and start the first step for robust point cloud detection, we propose the physical-aware simulation methods to generate degraded point clouds under different real-world common corruptions. Then, for the first attempt, we construct a benchmark based on the physical-aware common corruptions for point cloud detectors, which contains a total of 1,122,150 examples covering 7,481 scenes, 25 common corruption types, and 6 severities. With such a novel benchmark, we conduct extensive empirical studies on 12 state-of-the-art detectors that contain 6 different detection frameworks. Thus we get several insight observations revealing the vulnerabilities of the detectors and indicating the enhancement directions. Moreover, we further study the effectiveness of existing robustness enhancement methods based on data augmentation, data denoising, test-time adaptation. The benchmark can potentially be a new platform for evaluating point cloud detectors, opening a door for developing novel robustness enhancement methods. We make this benchmark publicly available on https://github.com/Castiel-Lee/robustness_pc_detector.

Download the Paper

AUTHORS

Written by

Shuangzhi Li

Zhijie Wang

Felix Xu

Qing Guo

Xingyu Li

Lei Ma

Publisher

IEEE Transactions on Multimedia (TMM)

Research Topics

Computer Vision

Core Machine Learning

Related Publications

July 23, 2024

COMPUTER VISION

Imagine yourself: Tuning-Free Personalized Image Generation

Zecheng He, Bo Sun, Felix Xu, Haoyu Ma, Ankit Ramchandani, Vincent Cheung, Siddharth Shah, Anmol Kalia, Ning Zhang, Peizhao Zhang, Roshan Sumbaly, Peter Vajda, Animesh Sinha

July 23, 2024

July 23, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

The Llama 3 Herd of Models

Llama team

July 23, 2024

July 21, 2024

CORE MACHINE LEARNING

From Neurons to Neutrons: A Case Study in Mechanistic Interpretability

Ouail Kitouni, Niklas Nolte, Samuel Pérez Díaz, Sokratis Trifinopoulos, Mike Williams

July 21, 2024

July 08, 2024

THEORY

CORE MACHINE LEARNING

An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes

Antonio Orvieto, Lin Xiao

July 08, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.