COMPUTER VISION

CORE MACHINE LEARNING

Common Corruption Robustness of Point Cloud Detectors: Benchmark and Enhancement

September 22, 2023

Abstract

Object detection through LiDAR-based point cloud has recently been important in autonomous driving. Although achieving high accuracy on public benchmarks, the state-of-the-art detectors may still go wrong and cause a heavy loss due to the widespread corruptions in the real world like rain, snow, sensor noise, etc. Nevertheless, there is a lack of a large-scale dataset covering diverse scenes and realistic corruption types with different severities to develop practical and robust point cloud detectors, which is challenging due to the heavy collection costs. To alleviate the challenge and start the first step for robust point cloud detection, we propose the physical-aware simulation methods to generate degraded point clouds under different real-world common corruptions. Then, for the first attempt, we construct a benchmark based on the physical-aware common corruptions for point cloud detectors, which contains a total of 1,122,150 examples covering 7,481 scenes, 25 common corruption types, and 6 severities. With such a novel benchmark, we conduct extensive empirical studies on 12 state-of-the-art detectors that contain 6 different detection frameworks. Thus we get several insight observations revealing the vulnerabilities of the detectors and indicating the enhancement directions. Moreover, we further study the effectiveness of existing robustness enhancement methods based on data augmentation, data denoising, test-time adaptation. The benchmark can potentially be a new platform for evaluating point cloud detectors, opening a door for developing novel robustness enhancement methods. We make this benchmark publicly available on https://github.com/Castiel-Lee/robustness_pc_detector.

Download the Paper

AUTHORS

Written by

Shuangzhi Li

Zhijie Wang

Felix Xu

Qing Guo

Xingyu Li

Lei Ma

Publisher

IEEE Transactions on Multimedia (TMM)

Research Topics

Computer Vision

Core Machine Learning

Related Publications

May 07, 2024

CORE MACHINE LEARNING

ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift

Hwanwoo Kim, Xin Zhang, Jiwei Zhao, Qinglong Tian

May 07, 2024

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 18, 2024

COMPUTER VISION

Imagine Flash: Accelerating Emu Diffusion Models with Backward Distillation

Jonas Kohler, Albert Pumarola, Edgar Schoenfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Vajda, Ali Thabet

April 18, 2024

March 28, 2024

THEORY

CORE MACHINE LEARNING

On the Identifiability of Quantized Factors

Vitoria Barin Pacela, Kartik Ahuja, Simon Lacoste-Julien, Pascal Vincent

March 28, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.