July 18, 2021
Bridging logical and algorithmic reasoning with modern machine learning techniques is a fundamental challenge with potentially transformative impact. On the algorithmic side, many NP-hard problems can be expressed as integer programs, in which the constraints play the role of their "combinatorial specification". In this work, we aim to integrate integer programming solvers into neural network architectures as layers capable of learning both the cost terms and the constraints. The resulting end-to-end trainable architectures jointly extract features from raw data and solve a suitable (learned) combinatorial problem with state-of-the-art integer programming solvers. We demonstrate the potential of such layers with an extensive performance analysis on synthetic data and with a demonstration on a competitive computer vision keypoint matching benchmark.
Publisher
ICML 2021
Research Topics
Core Machine Learning
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 08, 2022
Ari Morcos, Shashank Shekhar, Surya Ganguli, Ben Sorscher, Robert Geirhos
November 08, 2022
August 08, 2022
Ashkan Yousefpour, Akash Bharadwaj, Alex Sablayrolles, Graham Cormode, Igor Shilov, Ilya Mironov, Jessica Zhao, John Nguyen, Karthik Prasad, Mani Malek, Sayan Ghosh
August 08, 2022
December 07, 2020
Avishek Joey Bose, Gauthier Gidel, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton
December 07, 2020
November 03, 2020
Rui Zhang, Hanghang Tong Yinglong Xia, Yada Zhu
November 03, 2020
Foundational models
Latest news
Foundational models