July 28, 2019
In this work, we propose a goal-driven collaborative task that combines language, perception, and action. Specifically, we develop a Collaborative image-Drawing game between two agents, called CoDraw. Our game is grounded in a virtual world that contains movable clip art objects. The game involves two players: a Teller and a Drawer. The Teller sees an abstract scene containing multiple clip art pieces in a semantically meaningful configuration, while the Drawer tries to reconstruct the scene on an empty canvas using available clip art pieces. The two players communicate with each other using natural language. We collect the CoDraw dataset of ∼10K dialogs consisting of ∼138K messages exchanged between human players. We define protocols and metrics to evaluate learned agents in this testbed, highlighting the need for a novel crosstalk evaluation condition which pairs agents trained independently on disjoint subsets of the training data. We present models for our task and benchmark them using both fully automated evaluation and by having them play the game live with humans.
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
November 06, 2022
Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan
November 06, 2022
October 25, 2022
Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi
October 25, 2022
October 22, 2022
Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang
October 22, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Foundational models
Latest news
Foundational models