March 27, 2023
Self-supervised learning leverages unlabeled data effectively, improving label efficiency and generalization to domains without labeled data. While recent work has studied generalization to more acoustic/linguistic domains, languages, and modalities, these investigations are limited to single-source speech with one primary speaker in the recording. This paper presents Cocktail HuBERT, a self-supervised learning framework that generalizes to mixture speech using a masked pseudo source separation objective. This objective encourages the model to identify the number of sources, separate and understand the context, and infer the content of masked regions represented as discovered units. Cocktail HuBERT outperforms state-of-the-art results with 69% lower WER on multispeaker ASR, 31% lower DER on diarization, and is competitive on single- and multi-speaker tasks from SUPERB.
Publisher
ICASSP
May 14, 2025
Linnea Evanson, Christine Bulteau, Mathilde Chipaux, Georg Dorfmüller, Sarah Ferrand-Sorbets, Emmanuel Raffo, Sarah Rosenberg, Pierre Bourdillon, Jean Remi King
May 14, 2025
April 25, 2025
Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer
April 25, 2025
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
April 04, 2025
Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar
April 04, 2025
Our approach
Latest news
Foundational models