March 27, 2023
Self-supervised learning leverages unlabeled data effectively, improving label efficiency and generalization to domains without labeled data. While recent work has studied generalization to more acoustic/linguistic domains, languages, and modalities, these investigations are limited to single-source speech with one primary speaker in the recording. This paper presents Cocktail HuBERT, a self-supervised learning framework that generalizes to mixture speech using a masked pseudo source separation objective. This objective encourages the model to identify the number of sources, separate and understand the context, and infer the content of masked regions represented as discovered units. Cocktail HuBERT outperforms state-of-the-art results with 69% lower WER on multispeaker ASR, 31% lower DER on diarization, and is competitive on single- and multi-speaker tasks from SUPERB.
Publisher
ICASSP
October 16, 2024
Movie Gen Team
October 16, 2024
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
October 03, 2024
David Dale, Marta R. Costa-jussa
October 03, 2024
September 26, 2024
Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa
September 26, 2024
Foundational models
Latest news
Foundational models