RESEARCH

COMPUTER VISION

ClusterFit: Improving Generalization of Visual Representations

May 18, 2020

Abstract

Pre-training convolutional neural networks with weakly- supervised and self-supervised strategies is becoming increasingly popular for several computer vision tasks. However, due to the lack of strong discriminative signals, these learned representations may overfit to the pre-training objective (e.g., hashtag prediction) and not generalize well to downstream tasks. In this work, we present a simple strategy - ClusterFit (CF) to improve the robustness of the visual representations learned during pre-training. Given a dataset, we (a) cluster its features extracted from a pre-trained network using k-means and (b) re-train a new network from scratch on this dataset using cluster assignments as pseudo-labels. We empirically show that clustering helps reduce the pre-training task-specific information from the extracted features thereby minimizing overfitting to the same. Our approach is extensible to different pre- training frameworks – weak- and self-supervised, modalities – images and videos, and pre-training tasks – object and action classification. Through extensive transfer learning experiments on 11 different target datasets of varied vocabularies and granularities, we show that CF significantly improves the representation quality compared to the state-of- the-art large-scale (millions / billions) weakly-supervised image and video models and self-supervised image models.

Download the Paper

AUTHORS

Written by

Dhruv Mahajan

Abhinav Gupta

Deepti Ghadiyaram

Ishan Misra

Xueting Yan

Publisher

CVPR

Research Topics

Computer Vision

Related Publications

November 11, 2025

COMPUTER VISION

SYSTEMS RESEARCH

CATransformers: Carbon Aware Transformers Through Joint Model-Hardware Optimization

Irene Wang, Mostafa Elhouishi, Ekin Sumbul, Samuel Hsia, Daniel Jiang, Newsha Ardalani, Divya Mahajan, Carole-Jean Wu, Bilge Acun

November 11, 2025

November 10, 2025

RESEARCH

SPEECH & AUDIO

Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages

Omnilingual ASR team, Gil Keren, Artyom Kozhevnikov, Yen Meng, Christophe Ropers, Matthew Setzler, Skyler Wang, Ife Adebara, Michael Auli, Can Balioglu, Kevin Chan, Chierh Cheng, Joe Chuang, Caley Drooff, Mark Duppenthaler, Paul-Ambroise Duquenne, Alexander Erben, Cynthia Gao, Gabriel Mejia Gonzalez, Kehan Lyu, Sagar Miglani, Vineel Pratap, Kaushik Ram Sadagopan, Safiyyah Saleem, Arina Turkatenko, Albert Ventayol-Boada, Zheng-Xin Yong, Yu-An Chung, Jean Maillard, Rashel Moritz, Alexandre Mourachko, Mary Williamson, Shireen Yates

November 10, 2025

October 19, 2025

COMPUTER VISION

Enrich and Detect: Video Temporal Grounding with Multimodal LLMs

Shraman Pramanick, Effrosyni Mavroudi, Yale Song, Rama Chellappa, Lorenzo Torresani, Triantafyllos Afouras

October 19, 2025

October 19, 2025

RESEARCH

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 19, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.