RESEARCH

NLP

CLEVR-Dialog: A Diagnostic Dataset for Multi-Round Reasoning in Visual Dialog

September 19, 2019

Abstract

Visual Dialog is a multimodal task of answering a sequence of questions grounded in an image, using the conversation history as context. It entails challenges in vision, language, reasoning, and grounding. However, studying these subtasks in isolation on large, real datasets is infeasible as it requires prohibitively-expensive complete annotation of the ‘state’ of all images and dialogs. We develop CLEVR-Dialog, a large diagnostic dataset for studying multi-round reasoning in visual dialog. Specifically, we construct a dialog grammar that is grounded in the scene graphs of the images from the CLEVR dataset. This combination results in a dataset where all aspects of the visual dialog are fully annotated. In total, CLEVR-Dialog contains 5 instances of 10-round dialogs for about 85k CLEVR images, totaling to 4.25M question-answer pairs. We use CLEVR-Dialog to benchmark performance of standard visual dialog models; in particular, on visual coreference resolution (as a function of the coreference distance). This is the first analysis of its kind for visual dia- log models that was not possible without this dataset. We hope the findings from CLEVR- Dialog will help inform the development of future models for visual dialog. Our code and dataset are publicly available.

Download the Paper

AUTHORS

Written by

Marcus Rohrbach

Devi Parikh

Dhruv Batra

Satwik Kottur

José M. F. Moura

Publisher

NAACL

Related Publications

May 24, 2024

SPEECH & AUDIO

NLP

DOC-RAG: ASR Language Model Personalization with Domain-Distributed Co-occurrence Retrieval Augmentation

Zhe Liu

May 24, 2024

April 22, 2024

NLP

Text Quality-Based Pruning for Efficient Training of Language Models

Vasu Sharma *, Karthik Padthe *, Newsha Ardalani, Kushal Tirumala, Russ Howes, Hu Xu, Bernie Huang, Daniel Li (FAIR), Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer

April 22, 2024

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

April 05, 2024

CONVERSATIONAL AI

NLP

MART: Improving LLM Safety with Multi-round Automatic Red-Teaming

Suyu Ge, Chunting Zhou, Rui Hou, Madian Khabsa, Yi-Chia Wang, Qifan Wang, Jiawei Han, Yuning Mao

April 05, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.