Research

Classical Structured Prediction Losses for Sequence to Sequence Learning

June 1, 2018

Abstract

There has been much recent work on training neural attention models at the sequence-level using either reinforcement learning-style methods or by optimizing the beam. In this paper, we survey a range of classical objective functions that have been widely used to train linear models for structured prediction and apply them to neural sequence to sequence models. Our experiments show that these losses can perform surprisingly well by slightly outperforming beam search optimization in a like for like setup. We also report new state of the art results on both IWSLT’14 German-English translation as well as Gigaword abstractive summarization. On the large WMT’14 English-French task, sequence-level training achieves 41.5 BLEU which is on par with the state of the art.1

Download the Paper

Related Publications

November 10, 2025

Speech & Audio

Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages

Omnilingual ASR team, Gil Keren, Artyom Kozhevnikov, Yen Meng, Christophe Ropers, Matthew Setzler, Skyler Wang, Ife Adebara, Michael Auli, Can Balioglu, Kevin Chan, Chierh Cheng, Joe Chuang, Caley Drooff, Mark Duppenthaler, Paul-Ambroise Duquenne, Alexander Erben, Cynthia Gao, Gabriel Mejia Gonzalez, Kehan Lyu, Sagar Miglani, Vineel Pratap, Kaushik Ram Sadagopan, Safiyyah Saleem, Arina Turkatenko, Albert Ventayol-Boada, Zheng-Xin Yong, Yu-An Chung, Jean Maillard, Rashel Moritz, Alexandre Mourachko, Mary Williamson, Shireen Yates

November 10, 2025

October 18, 2025

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 18, 2025

October 13, 2025

Reinforcement Learni9ng

SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models

Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu

October 13, 2025

September 24, 2025

NLP

CWM: An Open-Weights LLM for Research on Code Generation with World Models

Jade Copet, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol Estape, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve

September 24, 2025

October 31, 2019

NLP

Facebook AI's WAT19 Myanmar-English Translation Task Submission

Peng-Jen Chen, Jiajun Shen, Matt Le, Vishrav Chaudhary, Ahmed El-Kishky, Guillaume Wenzek, Myle Ott, Marc’Aurelio Ranzato

October 31, 2019

October 27, 2019

Order-Aware Generative Modeling Using the 3D-Craft Dataset | Facebook AI Research

Zhuoyuan Chen, Demi Guo, Tong Xiao, Saining Xie, Xinlei Chen, Haonan Yu, Jonathan Gray, Kavya Srinet, Haoqi Fan, Jerry Ma, Charles R. Qi, Shubham Tulsiani, Arthur Szlam, Larry Zitnick

October 27, 2019

April 25, 2020

Energy-Based Models for Atomic-Resolution Protein Conformations | Facebook AI Research

Yilun Du, Joshua Meier, Jerry Ma, Rob Fergus, Alexander Rives

April 25, 2020

June 11, 2019

Computer Vision

ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero | Facebook AI Research

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, Larry Zitnick

June 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.