August 23, 2020
Large online services employ thousands of people to label content for applications such as video understanding, natural language processing, and content policy enforcement. While labelers typically reach their decisions by following a well-defined “protocol,” humans may still make mistakes. A common countermeasure is to have multiple people review the same content; however, this process is often time-intensive and requires accurate aggregation of potentially noisy decisions.
In this paper, we present CLARA (Confidence of Labels and Raters), a system developed and deployed at Facebook for aggregating reviewer decisions and estimating their uncertainty. We perform extensive validations and describe the deployment of CLARA for measuring the base rate of policy violations, quantifying reviewers’ performance, and improving their efficiency. In our experiments, we found that CLARA (a) provides an unbiased estimator of violation rates that is robust to changes in reviewer quality, with accurate confidence intervals, (b) provides an accurate assessment of reviewers’ performance, and (c) improves efficiency by reducing the number of reviews based on the review certainty, and enables the operational selection of a threshold on the cost/accuracy efficiency frontier.
Written by
Viet-An Nguyen
Peibei Shi
Jagdish Ramakrishnan
Udi Weinsberg
Henry C. Lin
Steve Metz
Neil Chandra
Jane Jing
Dimitris Kalimeris
Publisher
Knowledge Discovery and Data Mining (KDD) 2020
Research Topics
Artificial Intelligence
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models