RESEARCH

NLP

Choose Your Neuron: Incorporating Domain Knowledge through Neuron Importance.

September 09, 2018

Abstract

Individual neurons in convolutional neural networks supervised for image-level classification tasks have been shown to implicitly learn semantically meaningful concepts ranging from simple textures and shapes to whole or partial objects – forming a “dictionary” of concepts acquired through the learning process. In this work we introduce a simple, efficient zero-shot learning approach based on this observation. Our approach, which we call Neuron Importance-Aware Weight Transfer (NIWT), learns to map domain knowledge about novel “unseen” classes onto this dictionary of learned concepts and then optimizes for network parameters that can effectively combine these concepts – essentially learning classifiers by discovering and composing learned semantic concepts in deep networks. Our approach shows improvements over previous approaches on the CUBirds and AWA2 generalized zero-shot learning benchmarks. We demonstrate our approach on a diverse set of semantic inputs as external domain knowledge including attributes and natural language captions. Moreover by learning inverse mappings, NIWT can provide visual and textual explanations for the predictions made by the newly learned classifiers and provide neuron names. Our code is available at https://github.com/ramprs/neuron-importance-zsl .

Download the Paper

AUTHORS

Written by

Dhruv Batra

Devi Parikh

Prithvi Chattopadhyay

Ram Selvaraju

Stefan Lee

Publisher

ECCV

Related Publications

July 23, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

The Llama 3 Herd of Models

Llama team

July 23, 2024

June 25, 2024

NLP

Neurons in Large Language Models: Dead, N-gram, Positional

Elena Voita, Javier Ferrando Monsonis, Christoforos Nalmpantis

June 25, 2024

June 25, 2024

SPEECH & AUDIO

NLP

Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation

Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee

June 25, 2024

June 14, 2024

NLP

How to Train Your DRAGON: Diverse Augmentation Towards Generalizable Dense Retrieval

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Scott Yih, Xilun Chen

June 14, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.