Research

Computer Vision

Building High Resolution Maps for Humanitarian Aid and Development with Weakly- and Semi-Supervised Learning

June 16, 2019

Abstract

Detailed maps help governments and NGOs plan infrastructure development and mobilize relief around the world. Mapping is an open-ended task with a seemingly endless number of potentially useful features to be mapped. In this work, we focus on mapping buildings and roads. We do so with techniques that could easily extend to other features such as land use and land classification. We discuss real-world use cases of our maps by NGOs and humanitarian organizations around the world—from sustainable infrastructure planning to disaster relief. We investigate the pitfalls of existing datasets for building detection and road segmentation and highlight the way that models trained on these datasets—which tend to be highly specific to particular regions—produce worse results in regions of the world not adequately represented in the training set. We explain how we used data from OpenStreetMap (OSM) to train more generalizable models. These models outperform those trained on existing datasets, even in regions in which those models are overfit, and produce these same high-quality results for a diverse range of geographic areas. We utilize a combination of weakly-supervised and semi-supervised learning techniques that allow us to train on the noisy, crowdsourced data in OSM for building detection, which we formulate as a binary classification problem. We then show how weakly supervised learning techniques in conjunction with simple heuristics allowed us to train a semantic segmentation model for road extraction on noisy and never pixel-perfect training data from OSM.

Download the Paper

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.