NLP

BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation

February 07, 2025

Abstract

This paper presents BOUQuET, a multicentric and multi-register/domain dataset and benchmark, and its broader collaborative extension initiative. This dataset is handcrafted in non-English languages first, each of these source languages being represented among the 23 languages commonly used by half of the world’s population and therefore having the potential to serve as pivot languages that will enable more accurate translations. The dataset is specially designed to avoid contamination and be multicentric, so as to enforce representation of multilingual language features. In addition, the dataset goes beyond the sentence level, as it is organized in paragraphs of various lengths. Compared with related machine translation (MT) datasets, we show that BOUQuET has a broader representation of domains while simplifying the translation task for non-experts. Therefore, BOUQuET is specially suitable for the open initiative and call for translation participation that we are launching to extend it to a multi-way parallel corpus to any written language

Download the Paper

AUTHORS

Written by

The Omnilingual MT Team

Pierre Andrews

Mikel Artetxe

Mariano Coria Meglioli

Marta R. Costa-jussa

Joe Chuang

David Dale

Cynthia Gao

Jean Maillard

Alexandre Mourachko

Christophe Ropers

Safiyyah Saleem

Eduardo Sánchez

Yiannis Tsiamas

Arina Turkatenko

Albert Ventayol

Shireen Yates

Publisher

arXiv

Related Publications

July 02, 2025

REINFORCEMENT LEARNING

NLP

ASTRO: Teaching Language Models to Reason by Reflecting and Backtracking In-Context

Joongwon (Daniel) Kim, Anirudh Goyal, Liang Tan, Hannaneh Hajishirzi, Srini Iyer, Tianlu Wang

July 02, 2025

May 14, 2025

HUMAN & MACHINE INTELLIGENCE

SPEECH & AUDIO

Emergence of Language in the Developing Brain

Linnea Evanson, Christine Bulteau, Mathilde Chipaux, Georg Dorfmüller, Sarah Ferrand-Sorbets, Emmanuel Raffo, Sarah Rosenberg, Pierre Bourdillon, Jean Remi King

May 14, 2025

April 25, 2025

RESEARCH

NLP

ReasonIR: Training Retrievers for Reasoning Tasks

Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer

April 25, 2025

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.