May 06, 2024
Agents that assist people need to have well-initialized policies that can adapt quickly to align with their partners' reward functions. Initializing policies to maximize performance with unknown partners can be achieved by bootstrapping nonlinear models using imitation learning over large, offline datasets. Such policies can require prohibitive computation to fine-tune in-situ and therefore may miss critical run-time information about a partner's reward function as expressed through their immediate behavior. In contrast, online logistic regression using low-capacity models performs rapid inference and fine-tuning updates and thus can make effective use of immediate in-task behavior for reward function alignment. However, these low-capacity models cannot be bootstrapped as effectively by offline datasets and thus have poor initializations. We propose BLR-HAC, Bootstrapped Logistic Regression for Human Agent Collaboration, which bootstraps large nonlinear models to learn the parameters of a low-capacity model which then uses online logistic regression for updates during collaboration. We test BLR-HAC in a simulated surface rearrangement task and demonstrate that it achieves higher zero-shot accuracy than shallow methods and takes far less computation to adapt online while still achieving similar performance to fine-tuned, large nonlinear models. For code, please see our project page https://sites.google.com/view/blr-hac.
Written by
Ben Newman
Christopher Paxton
Kris Kitani
Henny Admoni
Publisher
AAMAS
Research Topics
Robotics
October 31, 2024
Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra
October 31, 2024
October 31, 2024
Matthew Chang, Gunjan Chhablani, Alexander William Clegg, Mikael Dallaire Cote, Ruta Desai, Michal Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, Siddharth Patki, Ishita Prasad, Xavi Puig, Akshara Rai, Ram Ramrakhya, Daniel Tran, Joanne Truong, John Turner, Eric Undersander, Jimmy Yang
October 31, 2024
October 31, 2024
Carolina Higuera, Akash Sharma, Krishna Bodduluri, Taosha Fan, Patrick Lancaster, Mrinal Kalakrishnan, Michael Kaess, Byron Boots, Mike Lambeta, Tingfan Wu, Mustafa Mukadam
October 31, 2024
April 02, 2024
Patrick Lancaster, Nicklas Hansen, Aravind Rajeswaran, Vikash Kumar
April 02, 2024
Foundational models
Latest news
Foundational models