October 03, 2024
We present BLASER 2.0, an automatic metric of machine translation quality which supports both speech and text modalities. Compared to its predecessor BLASER (Chen et al., 2023), BLASER 2.0 is based on better underlying text and speech representations that cover 202 text languages and 57 speech ones and extends the training data. BLASER 2.0 comes in two varieties: a reference-based and a reference-free (quality estimation) model. We demonstrate that the reference-free version is applicable not only at the dataset level, for evaluating the overall model performance, but also at the sentence level, for scoring individual translations. In particular, we show its applicability for detecting translation hallucinations and filtering training datasets to obtain more reliable translation models. The BLASER 2.0 models are publicly available at https://github.com/facebookresearch/sonar.
Written by
David Dale
Marta R. Costa-jussa
Publisher
EMNLP
Research Topics
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
September 26, 2024
Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa
September 26, 2024
September 05, 2024
Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma
September 05, 2024
August 20, 2024
Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar
August 20, 2024
Foundational models
Latest news
Foundational models