CORE MACHINE LEARNING

SYSTEMS RESEARCH

Beyond Efficiency: Scaling AI Sustainably

June 07, 2024

Abstract

Barroso’s seminal contributions in energy- proportional warehouse-scale computing launched an era where modern datacenters have become more energy efficient and cost effective than ever before. At the same time, modern AI applications have driven ever-increasing demands in computing, highlighting the importance of optimizing efficiency across the entire deep learning model development cycle. This paper characterizes the carbon impact of AI, including both operational carbon emissions from training and inference as well as embodied carbon emissions from datacenter construction and hardware manufacturing. We highlight key efficiency optimization opportunities for cutting-edge AI technologies, from deep learning recommendation models to multi-modal generative AI tasks. To scale AI sustainably, we must also go beyond efficiency and optimize across the life cycle of computing infrastructures, from hardware manufacturing to datacenter operations and end-of-life processing for the hardware.

Download the Paper

AUTHORS

Written by

Carole-Jean Wu

Bilge Acun

Ramya Raghavendra

Kim Hazelwood

Publisher

IEEE Micro Special Issue

Research Topics

Systems Research

Core Machine Learning

Related Publications

July 08, 2024

THEORY

CORE MACHINE LEARNING

An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes

Antonio Orvieto, Lin Xiao

July 08, 2024

June 27, 2024

SYSTEMS RESEARCH

Meta Large Language Model Compiler: Foundation Models of Compiler Optimization

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Rozière, Jonas Gehring, Gabriel Synnaeve, Hugh Leather

June 27, 2024

June 17, 2024

HUMAN & MACHINE INTELLIGENCE

COMPUTER VISION

D-Flow: Differentiating through Flows for Controlled Generation

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, Yaron Lipman

June 17, 2024

June 17, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Neta Shaul, Uriel Singer, Ricky Chen, Matt Le, Ali Thabet, Albert Pumarola, Yaron Lipman

June 17, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.