COMPUTER VISION

Better (pseudo-)labels for semi-supervised instance segmentation

April 03, 2024

Abstract

Despite the availability of large datasets for tasks like image classification and image-text alignment, labeled data for more complex recognition tasks, such as detection and segmentation, is less abundant. In particular, for instance segmentation annotations are time-consuming to produce, and the distribution of instances is often highly skewed across classes. While semi-supervised teacher-student distillation methods show promise in leveraging vast amounts of unlabeled data, they suffer from miscalibration, resulting in overconfidence in frequently represented classes and underconfidence in rarer ones. Additionally, these methods encounter difficulties in efficiently learning from a limited set of examples. We introduce a dual-strategy to enhance the teacher model's training process, substantially improving the performance on few-shot learning. Secondly, we propose a calibration correction mechanism that that enables the student model to correct the teacher's calibration errors. Using our approach, we observed marked improvements over a state-of-the-art supervised baseline performance on the LVIS dataset, with an increase of 2.8% in average precision (AP) and 10.3% gain in AP for rare classes.

Download the Paper

AUTHORS

Written by

Francois Porcher

Camille Couprie

Marc Szafraniec

Jakob Verbeek

Publisher

PML4LRS @ ICLR

Research Topics

Computer Vision

Related Publications

May 06, 2024

REINFORCEMENT LEARNING

COMPUTER VISION

Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint

Haoyue Tang, Tian Xie

May 06, 2024

April 23, 2024

COMPUTER VISION

Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on Aerial Lidar

Jamie Tolan, Eric Yang, Ben Nosarzewski, Guillaume Couairon, Huy Vo, John Brandt, Justine Spore, Sayantan Majumdar, Daniel Haziza, Janaki Vamaraju, Theo Moutakanni, Piotr Bojanowski, Tracy Johns, Brian White, Tobias Tiecke, Camille Couprie, Edward Saenz

April 23, 2024

April 23, 2024

CONVERSATIONAL AI

GRAPHICS

Generating Illustrated Instructions

Sachit Menon, Ishan Misra, Rohit Girdhar

April 23, 2024

April 18, 2024

COMPUTER VISION

Imagine Flash: Accelerating Emu Diffusion Models with Backward Distillation

Jonas Kohler, Albert Pumarola, Edgar Schoenfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Vajda, Ali Thabet

April 18, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.