CORE MACHINE LEARNING

Benchmarking Attacks on Learning with Errors

August 09, 2024

Abstract

Lattice cryptography schemes based on the learning with errors (LWE) hardness assumption have been standardized by NIST for use as post-quantum cryptosystems, and by HomomorphicEncryption.org for performing encrypted computations on sensitive data. Thus, understanding their concrete security is critical. Most work on LWE security focuses on theoretical estimates of attack performance, which is important but may overlook attack nuances arising in real-world implementations. The sole existing concrete benchmarking effort, the Darmstadt Lattice Challenge, does not include benchmarks relevant to the standardized LWE parameter choices—such as small secret and small error distributions, and Ring-LWE (RLWE) and Module-LWE (MLWE) variants. To improve our understanding of concrete LWE security, we provide the first benchmarks for LWE secret recovery on standardized parameters, for small and low-weight (sparse) secrets. We evaluate four LWE attacks in these settings to serve as a baseline: the Search-LWE attacks uSVP, SALSA, and Cool&Cruel, and the DecisionLWE attack: Dual Hybrid Meet-in-the-Middle (MitM). We extend the SALSA and Cool&Cruel attacks in significant ways, and implement and scale up MitM attacks for the first time. For example, we recover hamming weight 9 − 11 binomial secrets for KYBER (kappa = 2) parameters in 28 − 36 hours with SALSA and Cool&Cruel, while we find that MitM can solve DecisionLWE instances for hamming weights up to 4 in under an hour for Kyber parameters, while uSVP attacks do not recover any secrets after running for more than 1100 hours. We also compare concrete performance against theoretical estimates. Finally, we open source the code to enable future research: https://github.com/facebookresearch/LWE-benchmarking

Download the Paper

AUTHORS

Written by

Emily Wenger

Eshika Saxena

Mohamed Malhou

Ellie Thieu

Kristin Lauter

Publisher

arXiv and the IEEE Symposium on Security and Privacy 2025

Research Topics

Core Machine Learning

Related Publications

December 18, 2024

CORE MACHINE LEARNING

UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling

Haider Al-Tahan, Quentin Garrido, Randall Balestriero, Diane Bouchacourt, Caner Hazirbas, Mark Ibrahim

December 18, 2024

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

CORE MACHINE LEARNING

SYSTEMS RESEARCH

Croissant: A Metadata Format for ML-Ready Datasets

Mubashara Akhtar, Omar Benjelloun, Costanza Conforti, Luca Foschini, Pieter Gijsbers, Joan Giner-Miguelez, Sujata Goswami, Nitisha Jain, Michalis Karamousadakis, Satyapriya Krishna, Michael Kuchnik, Sylvain Lesage, Quentin Lhoest, Pierre Marcenac, Manil Maskey, Peter Mattson, Luis Oala, Hamidah Oderinwale, Pierre Ruyssen, Tim Santos, Rajat Shinde, Elena Simperl, Arjun Suresh, Goeffry Thomas, Slava Tykhonov, Joaquin Vanschoren, Susheel Varma, Jos van der Velde, Steffen Vogler, Carole-Jean Wu, Luyao Zhang

December 12, 2024

December 10, 2024

CORE MACHINE LEARNING

Flow Matching Guide and Code

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky Chen, David Lopez-Paz, Heli Ben Hamu, Itai Gat

December 10, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.