THEORY

REINFORCEMENT LEARNING

Bandits with Knapsacks beyond the Worst-Case Analysis

November 12, 2021

Abstract

Bandits with Knapsacks (BwK) is a general model for multi-armed bandits under supply/budget constraints. While worst-case regret bounds for BwK are well-understood, we present three results that go beyond the worst-case perspective. First, we provide upper and lower bounds which amount to a full characterization for logarithmic, instance-dependent regret rates. Second, we consider “simple regret” in BwK, which tracks algorithm’s performance in a given round, and prove that it is small in all but a few rounds. Third, we provide a general “reduction” from BwK to bandits which takes advantage of some known helpful structure, and apply this reduction to combinatorial semi-bandits, linear contextual bandits, and multinomial-logit bandits. Our results build on the BwK algorithm from Agrawal and Devanur (2014), providing new analyses thereof.

Download the Paper

AUTHORS

Written by

Karthik Abinav Sankararaman

Aleksandrs Slivkins

Publisher

NeurIPS

Research Topics

Theory

Reinforcement Learning

Core Machine Learning

Related Publications

December 12, 2024

REINFORCEMENT LEARNING

Zero-Shot Whole-Body Humanoid Control via Behavioral Foundation Models

Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen Xu, Alessandro Lazaric, Matteo Pirotta

December 12, 2024

November 06, 2024

THEORY

CORE MACHINE LEARNING

The Road Less Scheduled

Aaron Defazio, Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky

November 06, 2024

August 16, 2024

THEORY

REINFORCEMENT LEARNING

Dual Approximation Policy Optimization

Zhihan Xiong, Maryam Fazel, Lin Xiao

August 16, 2024

July 08, 2024

THEORY

CORE MACHINE LEARNING

An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes

Antonio Orvieto, Lin Xiao

July 08, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.