April 2, 2019
Typical large-scale recommender systems use deep learning models that are stored on a large amount of DRAM. These models often rely on embeddings, which consume most of the required memory. We present Bandana, a storage system that reduces the DRAM footprint of embeddings, by using Non-volatile Memory (NVM) as the primary storage medium, with a small amount of DRAM as cache. The main challenge in storing embeddings on NVM is its limited read bandwidth compared to DRAM. Bandana uses two primary techniques to address this limitation: first, it stores embedding vectors that are likely to be read together in the same physical location, using hypergraph partitioning, and second, it decides the number of embedding vectors to cache in DRAM by simulating dozens of small caches. These techniques allow Bandana to increase the effective read bandwidth of NVM by 2-3× and thereby significantly reduce the total cost of ownership.
February 06, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 06, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Our approach
Latest news
Foundational models