May 29, 2021
Entities are at the center of how we represent and aggregate knowledge. For instance, Encyclopedias such as Wikipedia are structured by entities (e.g., one per Wikipedia article). The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering. Current approaches can be understood as classifiers among atomic labels, one for each entity. Their weight vectors are dense entity representations produced by encoding entity meta information such as their descriptions. This approach has several shortcomings: (i) context and entity affinity is mainly captured through a vector dot product, potentially missing fine-grained interactions; (ii) a large memory footprint is needed to store dense representations when considering large entity sets; (iii) an appropriately hard set of negative data has to be subsampled at training time. In this work, we propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion. This mitigates the aforementioned technical issues since: (i) the autoregressive formulation directly captures relations between context and entity name, effectively cross encoding both; (ii) the memory footprint is greatly reduced because the parameters of our encoder-decoder architecture scale with vocabulary size, not entity count; (iii) the softmax loss is computed without subsampling negative data. We experiment with more than 20 datasets on entity disambiguation, end-to-end entity linking and document retrieval tasks, achieving new state-of-the-art or very competitive results while using a tiny fraction of the memory footprint of competing systems. Finally, we demonstrate that new entities can be added by simply specifying their names. Code and pre-trained models Here
Publisher
ICLR 2021
Research Topics
October 18, 2025
Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal
October 18, 2025
October 13, 2025
Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu
October 13, 2025
September 24, 2025
Jade Copet, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol Estape, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve
September 24, 2025
September 23, 2025
Daniel Song, Peter Ney, Cristina Menghini, Faizan Ahmad, Aidan Boyd, Nathaniel Li, Ziwen Han, Jean-Christophe Testud, Saisuke Okabayashi, Maeve Ryan, Jinpeng Miao, Hamza Kwisaba, Felix Binder, Spencer Whitman, Jim Gust, Esteban Arcaute, Dhaval Kapil, Jacob Kahn, Ayaz Minhas, Tristan Goodman, Lauren Deason, Alexander Vaughan, Shengjia Zhao, Summer Yue
September 23, 2025
October 31, 2019
Peng-Jen Chen, Jiajun Shen, Matt Le, Vishrav Chaudhary, Ahmed El-Kishky, Guillaume Wenzek, Myle Ott, Marc’Aurelio Ranzato
October 31, 2019
March 14, 2019
Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, Yann Dauphin
March 14, 2019
January 13, 2020
Vineel Pratap, Qiantong Xu, Jacob Kahn, Gilad Avidov, Tatiana Likhomanenko, Awni Hannun, Vitaliy Liptchinsky, Gabriel Synnaeve, Ronan Collobert
January 13, 2020
April 30, 2018
Zhilin Yang, Saizheng Zhang, Jack Urbanek, Will Feng, Alexander H. Miller, Arthur Szlam, Douwe Kiela, Jason Weston
April 30, 2018

Our approach
Latest news
Foundational models