April 14, 2025
Diffusion models with transformer architectures have demonstrated promising capabilities in generating high-fidelity images and scalability for high resolution. However, iterative sampling process required for synthesis is very resource-intensive. A line of work has focused on distilling solutions to probability flow ODEs into few-step student models. Nevertheless, existing methods have been limited by their reliance on the most recent denoised samples as input, rendering them susceptible to exposure bias. To address this limitation, we propose AutoRegressive Distillation (ARD), a novel approach that leverages the historical trajectory of the ODE to predict future steps. ARD offers two key benefits: 1) it mitigates exposure bias by utilizing a predicted historical trajectory that is less susceptible to accumulated errors, and 2) it leverages the previous history of the ODE trajectory as a more effective source of coarse-grained information. ARD modifies the teacher transformer architecture by adding token-wise time embedding to mark each input from the trajectory history and employs a block-wise causal attention mask for training. Furthermore, incorporating historical inputs only in lower transformer layers enhances performance and efficiency. We validate the effectiveness of ARD in a class-conditioned generation on ImageNet and T2I synthesis. Our model achieves a 5x reduction in FID degradation compared to the baseline methods while requiring only 1.1% extra FLOPs on ImageNet-256. Moreover, ARD reaches FID of 1.84 on ImageNet-256 in merely 4 steps and outperforms the publicly available 1024p text-to-image distilled models in prompt adherence score with a minimal drop in FID compared to the teacher.
Written by
Yeongmin Kim
Sotiris Anagnostidis
Yuming Du
Edgar Schoenfeld
Jonas Kohler
Markos Georgopoulos
Albert Pumarola
Ali Thabet
Artsiom Sanakoyeu
Publisher
CVPR, arXiv
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
April 17, 2025
Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier
April 17, 2025
March 24, 2025
Wassim (Wes) Bouaziz, Nicolas Usunier, El Mahdi El Mhamdi
March 24, 2025
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
Foundational models
Our approach
Latest news
Foundational models