May 26, 2020
We describe how to modify hardware page translation to enable CPU software access to compressed and swizzled GPU data arrays as if they were decompressed and stored in row-major order. In a shared memory system, this allows CPU to directly access the GPU data without copying the data or losing the performance and bandwidth benefits of using compression and swizzling on the GPU. Our method is flexible enough to support a wide variety of existing and future swizzling and compression schemes, including block-based lossless compression that requires per-block meta-data. Providing automatic compression can improve performance, even without considering the cost of copying data. In our experiments, we observed up to 33% reduction in CPU/memory energy use and up to 35% reduction in CPU computation time.
Written by
Larry Seiler
Daqi Lin
Cem Yuksel
Publisher
Symposium on Interactive 3D Graphics and Games (I3D)
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 06, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 06, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Our approach
Latest news
Foundational models