November 04, 2020
We present a self-supervised approach to learn audio-visual representations from video. Our method uses contrastive learning for cross-modal discrimination of video from audio and vice versa. We show that optimizing for cross-modal discrimination, rather than within-modal discrimination, is important to learn good representations from video and audio. With this simple but powerful insight, our method achieves state-of-the-art results when finetuned on action recognition tasks.
Publisher
ECCV Workshop - MVA
Research Topics
March 13, 2025
Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung
March 13, 2025
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 07, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 07, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
Foundational models
Our approach
Latest news
Foundational models