COMPUTER VISION

ML APPLICATIONS

Attention-Based Query Expansion Learning

August 21, 2020

Abstract

Query expansion is a technique widely used in image search consisting in combining highly ranked images from an original query into an expanded query that is then reissued, generally leading to increased recall and precision. An important aspect of query expansion is choosing an appropriate way to combine the images into a new query. Interestingly, despite the undeniable empirical success of query expansion, ad-hoc methods with different caveats have dominated the landscape, and not a lot of research has been done on learning how to do query expansion. In this paper we propose a more principled framework to query expansion, where one trains, in a discriminative manner, a model that learns how images should be aggregated to form the expanded query. Within this framework, we propose a model that leverages a self-attention mechanism to effectively learn how to transfer information between the different images before aggregating them. Our approach obtains higher accuracy than existing approaches on standard benchmarks. More importantly, our approach is the only one that consistently shows high accuracy under different regimes, overcoming caveats of existing methods.

Download the Paper

AUTHORS

Written by

Albert Gordo

Filip Radenovic

Tamara Berg

Publisher

ECCV

Research Topics

Computer Vision

Related Publications

June 11, 2025

ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

June 11, 2025

ROBOTICS

RESEARCH

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.