COMPUTER VISION

Are Visual Recognition Models Robust to Image Compression?

July 04, 2023

Abstract

Reducing the data footprint of visual content via image compression is essential to reduce storage requirements, but also to reduce the bandwidth and latency requirements for transmission. In particular, the use of compressed images allows for faster transfer of data, and faster response times for visual recognition in edge devices that rely on cloud-based services. In this paper, we first analyze the impact of image compression using traditional codecs, as well as recent state-of-the-art neural compression approaches, on three visual recognition tasks: image classification, object detection, and semantic segmentation. We consider a wide range of compression levels, ranging from 0.1 to 2 bits-per-pixel (bpp). We find that for all three tasks, the recognition ability is significantly impacted when using strong compression. For example, for segmentation mIoU is reduced from 44.5 to 30.5 mIoU when compressing to 0.1 bpp using the best compression model we evaluated. Second, we test to what extent this performance drop can be ascribed to a loss of relevant information in the compressed image, or to a lack of generalization of visual recognition models to images with compression artefacts. We find that to a large extent the performance loss is due to the latter: by finetuning the recognition models on compressed training images, most of the performance loss is recovered. For example, bringing segmentation accuracy back up to 42 mIoU, i.e. recovering 82\% of the original drop in accuracy.

Download the Paper

AUTHORS

Written by

João Maria Janeiro

Stanislav Frolov

Alaa El-Nouby

Jakob Verbeek

Publisher

Neural Compression Workshop @ ICML 2023

Research Topics

Computer Vision

Related Publications

June 11, 2025

ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

June 11, 2025

ROBOTICS

RESEARCH

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.