COMPUTER VISION

ML APPLICATIONS

Are Labels Necessary for Neural Architecture Search?

July 17, 2020

Abstract

Existing neural network architectures in computer vision --- whether designed by humans or by machines --- were typically found using both images and their associated labels. In this paper, we ask the question: can we find high-quality neural architectures using only images, but no human-annotated labels? To answer this question, we first define a new setup called Unsupervised Neural Architecture Search (UnNAS). We then conduct two sets of experiments. In sample-based experiments, we train a large number (500) of diverse architectures with either supervised or unsupervised objectives, and found that the architecture rankings produced with and without labels are highly correlated. In search-based experiments, we run a well-established NAS algorithm (DARTS) using various unsupervised objectives, and report that the architectures searched without labels can be competitive to their counterparts searched with labels. Together, these results reveal the potentially surprising finding that labels are not necessary, and the image statistics alone may be sufficient to identify good neural architectures.

Download the Paper

AUTHORS

Written by

Saining Xie

Kaiming He

Piotr Dollar

Ross Girshick

Alan Yuille

Chenxi Liu

Publisher

ECCV

Research Topics

Computer Vision

Related Publications

September 27, 2023

COMPUTER VISION

Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack

Xiaoliang Dai, Ji Hou, Kevin Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue (R) Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran Motwani, Yiwen Song, Yi Wen, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter Vajda, Devi Parikh

September 27, 2023

August 31, 2023

COMPUTER VISION

FACET: Fairness in Computer Vision Evaluation Benchmark

Laura Gustafson, Chloe Rolland, Nikhila Ravi, Quentin Duval, Aaron Adcock, Cheng-Yang Fu, Melissa Hall, Candace Ross

August 31, 2023

July 14, 2023

NLP

COMPUTER VISION

Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning

Lili Yu, Bowen Shi, Ram Pasunuru, Benjamin Miller, Olga Golovneva, Tianlu Wang, Arun Babu, Binh Tang, Brian Karrer, Shelly Sheynin, Candace Ross, Adam Polyak, Russ Howes, Vasu Sharma, Jacob Xu, Uriel Singer, Daniel Li (FAIR), Gargi Ghosh, Yaniv Taigman, Maryam Fazel-Zarandi, Asli Celikyilmaz, Luke Zettlemoyer, Armen Aghajanyan

July 14, 2023

June 20, 2023

COMPUTER VISION

Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild

Garrick Brazil, Abhinav Kumar, Julian Straub, Nikhila Ravi, Justin Johnson, Georgia Gkioxari

June 20, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.