RESEARCH

COMPUTER VISION

Are Convolutional Networks Inherently Foveated?

December 08, 2021

Abstract

When convolutional layers apply no padding, central pixels have more ways to contribute to the convolution than peripheral pixels. Such discrepancy grows exponentially with the number of layers, leading to implicit foveation of the input pixels. We show that this discrepancy can persist even when padding is applied. In particular, with the commonly-used zero-padding, foveation effects are significantly reduced but not eliminated. We explore how different aspects of convolution arithmetic impact the extent and magnitude of these effects, and elaborate on which alternative padding techniques can mitigate it. Finally, we compare our findings with foveation in human vision, suggesting that both effects possibly have similar nature and implications.

Download the Paper

AUTHORS

Written by

Bilal Alsallakh

David Adkins

Narine Kokhlikyan

Orion Reblitz-Richardson

Vivek Miglani

Publisher

NeurIPS SVRHM Workshop

Related Publications

December 12, 2024

COMPUTER VISION

EvalGIM: A Library for Evaluating Generative Image Models

Melissa Hall, Oscar MaƱas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano

December 12, 2024

December 11, 2024

COMPUTER VISION

Video Seal: Open and Efficient Video Watermarking

Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko

December 11, 2024

December 11, 2024

NLP

COMPUTER VISION

Meta CLIP 1.2

Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer

December 11, 2024

December 11, 2024

COMPUTER VISION

Measuring Deja Vu Memorization Efficiently

Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri

December 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.