December 08, 2021
When convolutional layers apply no padding, central pixels have more ways to contribute to the convolution than peripheral pixels. Such discrepancy grows exponentially with the number of layers, leading to implicit foveation of the input pixels. We show that this discrepancy can persist even when padding is applied. In particular, with the commonly-used zero-padding, foveation effects are significantly reduced but not eliminated. We explore how different aspects of convolution arithmetic impact the extent and magnitude of these effects, and elaborate on which alternative padding techniques can mitigate it. Finally, we compare our findings with foveation in human vision, suggesting that both effects possibly have similar nature and implications.
Publisher
NeurIPS SVRHM Workshop
September 05, 2024
Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma
September 05, 2024
August 20, 2024
Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar
August 20, 2024
August 15, 2024
Kamalika Chaudhuri, Chuan Guo, Laurens van der Maaten, Saeed Mahloujifar, Mark Tygert
August 15, 2024
July 29, 2024
Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chay Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, Christoph Feichtenhofer
July 29, 2024
Foundational models
Latest news
Foundational models