February 21, 2023
Over the past few years, deep neural networks (DNNs) have achieved tremendous success and have been continuously applied in many application domains. However, during the practical deployment in industrial tasks, DNNs are found to be erroneous-prone due to various reasons such as overfitting and lacking of robustness to real-world corruptions during practical usage. To address these challenges, many recent attempts have been made to repair DNNs for version updates under practical operational contexts by updating weights (i.e., network parameters) through retraining, fine-tuning, or direct weight fixing at a neural level. Nevertheless, existing solutions often neglect the effects of neural network architecture and weight relationships across neurons and layers. In this work, as the first attempt, we initiate to repair DNNs by jointly optimizing the architecture and weights at a higher (i.e., block) level. We first perform empirical studies to investigate the limitation of whole network-level and layer-level repairing, which motivates us to explore a novel repairing direction for DNN repair at the block level. To this end, we need to further consider techniques to address two key technical challenges, i.e., block localization, where we should localize the targeted block thatwe need to fix; and howto perform joint architecture and weight repairing. Specifically, we first propose adversarial-aware spectrum analysis for vulnerable block localization that considers the neurons’ status and weights’ gradients in blocks during the forward and backward processes, which enables more accurate candidate block localization for repairing even under a few examples. Then, we further propose the architecture-oriented search-based repairing that relaxes the targeted block to a continuous repairing search space at higher deep feature levels. By jointly optimizing the architecture and weights in that space, we can identify a much better block architecture. We implement our proposed repairing techniques as a tool, named ArchRepair, and conduct extensive experiments to validate the proposed method. The results show that our method can not only repair but also enhance accuracy & robustness, outperforming the state-of-the-art DNN repair techniques.
Publisher
ACM Transactions on Software Engineering and Methodology (TOSEM)
June 11, 2025
Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao
June 11, 2025
June 11, 2025
Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux
June 11, 2025
June 11, 2025
Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran
June 11, 2025
June 11, 2025
Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas
June 11, 2025
Our approach
Latest news
Foundational models