COMPUTER VISION

CORE MACHINE LEARNING

Anytime Inference with Distilled Hierarchical Neural Ensembles

December 13, 2020

Abstract

Inference in deep neural networks can be computationally expensive, and networks capable of anytime inference are important in scenarios where the amount of compute or quantity of input data varies over time. In such networks the inference process can interrupted to provide a result faster, or continued to obtain a more accurate result. We propose Hierarchical Neural Ensembles (HNE), a novel framework to embed an ensemble of multiple networks in a hierarchical tree structure, sharing intermediate layers. In HNE we control the complexity of inference on-the-fly by evaluating more or less models in the ensemble. Our second contribution is a novel hierarchical distillation method to boost the prediction accuracy of small ensembles. This approach leverages the nested structure of our ensembles, to optimally allocate accuracy and diversity across the individual models. Our experiments show that, compared to previous anytime inference models, HNE provides state-of-the-art accuracy-compute trade-offs on the CIFAR-10/100 and ImageNet datasets.

Download the Paper

AUTHORS

Written by

Jakob Verbeek

Adria Ruiz

Publisher

AAAI

Research Topics

Computer Vision

Core Machine Learning

Related Publications

July 23, 2024

COMPUTER VISION

Imagine yourself: Tuning-Free Personalized Image Generation

Zecheng He, Bo Sun, Felix Xu, Haoyu Ma, Ankit Ramchandani, Vincent Cheung, Siddharth Shah, Anmol Kalia, Ning Zhang, Peizhao Zhang, Roshan Sumbaly, Peter Vajda, Animesh Sinha

July 23, 2024

July 23, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

The Llama 3 Herd of Models

Llama team

July 23, 2024

July 21, 2024

CORE MACHINE LEARNING

From Neurons to Neutrons: A Case Study in Mechanistic Interpretability

Ouail Kitouni, Niklas Nolte, Samuel Pérez Díaz, Sokratis Trifinopoulos, Mike Williams

July 21, 2024

July 08, 2024

THEORY

CORE MACHINE LEARNING

An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes

Antonio Orvieto, Lin Xiao

July 08, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.