December 13, 2020
Inference in deep neural networks can be computationally expensive, and networks capable of anytime inference are important in scenarios where the amount of compute or quantity of input data varies over time. In such networks the inference process can interrupted to provide a result faster, or continued to obtain a more accurate result. We propose Hierarchical Neural Ensembles (HNE), a novel framework to embed an ensemble of multiple networks in a hierarchical tree structure, sharing intermediate layers. In HNE we control the complexity of inference on-the-fly by evaluating more or less models in the ensemble. Our second contribution is a novel hierarchical distillation method to boost the prediction accuracy of small ensembles. This approach leverages the nested structure of our ensembles, to optimally allocate accuracy and diversity across the individual models. Our experiments show that, compared to previous anytime inference models, HNE provides state-of-the-art accuracy-compute trade-offs on the CIFAR-10/100 and ImageNet datasets.
Written by
Jakob Verbeek
Adria Ruiz
Publisher
AAAI
November 20, 2024
Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti
November 20, 2024
November 20, 2024
Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra
November 20, 2024
November 14, 2024
Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si
November 14, 2024
November 11, 2024
Sherry Xue, Romy Luo, Changan Chen, Kristen Grauman
November 11, 2024
Foundational models
Latest news
Foundational models