ML APPLICATIONS

Antipodes of Label Differential Privacy: PATE and ALIBI

October 29, 2021

Abstract

We consider the privacy-preserving machine learning (ML) setting where the trained model must satisfy differential privacy (DP) with respect to the labels of the training examples. We propose two novel approaches based on, respectively, the Laplace mechanism and the PATE framework, and demonstrate their effectiveness on standard benchmarks. While recent work by Ghazi et al. proposed Label DP schemes based on a randomized response mechanism, we argue that additive Laplace noise coupled with Bayesian inference (ALIBI) is a better fit for typical ML tasks. Moreover, we show how to achieve very strong privacy levels in some regimes, with our adaptation of the PATE framework that builds on recent advances in semi-supervised learning. We complement theoretical analysis of our algorithms' privacy guarantees with empirical evaluation of their memorization properties. Our evaluation suggests that comparing different algorithms according to their provable DP guarantees can be misleading and favor a less private algorithm with a tighter analysis. Code for implementation of algorithms and memorization attacks is available from https://github.com/facebookresearch/label_dp_antipodes.

Download the Paper

AUTHORS

Written by

Mani Malek

Ilya Mironov

Karthik Prasad

Igor Shilov

Florian Tramer

Publisher

NeurIPS

Related Publications

August 12, 2025

RESEARCH

NLP

Efficient Speculative Decoding for Llama at Scale: Challenges and Solutions

GenAI and Infra Teams

August 12, 2025

August 05, 2025

RESEARCH

CORE MACHINE LEARNING

FastCSP: Accelerated Molecular Crystal Structure Prediction with Universal Model for Atoms

Vahe Gharakhanyan, Yi Yang, Luis Barroso-Luque, Muhammed Shuaibi, Daniel S. Levine, Kyle Michel, Viachaslau Bernat, Misko Dzamba, Xiang Fu, Meng Gao, Xingyu Liu, Keian Noori, Lafe J. Purvis, Tingling Rao, Brandon M. Wood, Ammar Rizvi, Matt Uyttendaele, Andrew J. Ouderkirk, Chiara Daraio, C. Lawrence Zitnick, Arman Boromand, Noa Marom, Zachary W. Ulissi, Anuroop Sriram

August 05, 2025

August 04, 2025

RESEARCH

ML APPLICATIONS

The Open DAC 2025 Dataset for Sorbent Discovery in Direct Air Capture

Anuroop Sriram, Logan M. Brabson, Xiaohan Yu, Sihoon Choi, Kareem Abdelmaqsoud, Elias Moubarak, Pim de Haan, Sindy Löwe, Johann Brehmer, John R. Kitchin, Max Welling, C. Lawrence Zitnick, Zachary Ulissi, Andrew J. Medford, David S. Sholl

August 04, 2025

May 14, 2025

RESEARCH

CORE MACHINE LEARNING

UMA: A Family of Universal Models for Atoms

Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick

May 14, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.