RESEARCH

NLP

Anti-efficient encoding in emergent communication

December 08, 2019

Abstract

Despite renewed interest in emergent language simulations with neural networks, little is known about the basic properties of the induced code, and how they compare to human language. One fundamental characteristic of the latter, known as Zipf's Law of Abbreviation (ZLA), is that more frequent words are efficiently associated to shorter strings. We study whether the same pattern emerges when two neural networks, a" speaker" and a" listener", are trained to play a signaling game. Surprisingly, we find that networks develop an\emph {anti-efficient} encoding scheme, in which the most frequent inputs are associated to the longest messages, and messages in general are skewed towards the maximum length threshold. This anti-efficient code appears easier to discriminate for the listener, and, unlike in human communication, the speaker does not impose a contrasting least-effort pressure towards brevity. Indeed, when the cost function includes a penalty for longer messages, the resulting message distribution starts respecting ZLA. Our analysis stresses the importance of studying the basic features of emergent communication in a highly controlled setup, to ensure the latter will not strand too far from human language. Moreover, we present a concrete illustration of how different functional pressures can lead to successful communication codes that lack basic properties of human language, thus highlighting the role such pressures play in the latter.

Download the Paper

AUTHORS

Written by

Rahma Chaabouni

Emmanuel Dupoux

Evgeny Kharitonov

Marco Baroni

Publisher

NeurIPS

Related Publications

December 09, 2024

NLP

CORE MACHINE LEARNING

Discrete flow matching

Itai Gat, Tal Remez, Felix Kreuk, Ricky Chen, Gabriel Synnaeve, Yossef (Yossi) Adi, Yaron Lipman, Neta Shaul

December 09, 2024

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 19, 2024

NLP

Adaptive Decoding via Latent Preference Optimization

Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin

November 19, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.