July 13, 2018
Machine translation is a popular test bed for research in neural sequence-to-sequence models but despite much recent research, there is still a lack of understanding of these models. Practitioners report performance degradation with large beams, the under-estimation of rare words and a lack of diversity in the final translations. Our study relates some of these issues to the inherent uncertainty of the task, due to the existence of multiple valid translations for a single source sentence, and to the extrinsic uncertainty caused by noisy training data. We propose tools and metrics to assess how uncertainty in the data is captured by the model distribution and how it affects search strategies that generate translations. Our results show that search works remarkably well but that models tend to spread too much probability mass over the hypothesis space. Next, we propose tools to assess model calibration and show how to easily fix some shortcomings of current models. As part of this study, we release multiple human reference translations for two popular benchmarks.
Publisher
ICML
August 01, 2024
Ju-Chieh Chou, Wei-Ning Hsu, Karen Livescu, Arun Babu, Alexis Conneau, Alexei Baevski, Michael Auli
August 01, 2024
July 23, 2024
Llama team
July 23, 2024
June 25, 2024
Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee
June 25, 2024
June 05, 2024
Robin San Romin, Pierre Fernandez, Hady Elsahar, Alexandre Deffosez, Teddy Furon, Tuan Tran
June 05, 2024
Foundational models
Latest news
Foundational models