RESEARCH

NLP

An Evaluation of Fisher Approximations Beyond Kronecker Factorization

May 01, 2018

Abstract

We study two coarser approximations on top of a Kronecker factorization (K-FAC) of the Fisher Information Matrix, to scale up Natural Gradient to deep and wide Convolutional Neural Networks (CNNs). The first considers the feature maps as spatially uncorrelated while the second considers only correlations among groups of channels. Both variants yield a further block-diagonal approximation tailored for CNNs, which is much more efficient to compute and invert. Experiments on the VGG11 and ResNet50 architectures show the technique can substantially speed up both K-FAC and a baseline with Batch Normalization in wall-clock time, yielding faster convergence to similar or better generalization error.

Download the Paper

AUTHORS

Written by

Pascal Vincent

Nicolas Ballas

Cesar Laurent

Thomas George

Xavier Bouthillier

Publisher

ICLR

Related Publications

December 17, 2024

NLP

FLAME : Factuality-Aware Alignment for Large Language Models

Jack Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, Xilun Chen

December 17, 2024

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

NLP

Byte Latent Transformer: Patches Scale Better Than Tokens

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer

December 12, 2024

December 12, 2024

HUMAN & MACHINE INTELLIGENCE

NLP

Explore Theory-of-Mind: Program-Guided Adversarial Data Generation for Theory of Mind Reasoning

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz

December 12, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.