October 31, 2019
We address the problem of grounding free-form textual phrases by using weak supervision from image-caption pairs. We propose a novel end-to-end model that uses caption-to-image retrieval as a `downstream' task to guide the process of phrase localization. Our method, as a first step, infers the latent correspondences between regions-of-interest (RoIs) and phrases in the caption and creates a discriminative image representation using these matched RoIs. In a subsequent step, this (learned) representation is aligned with the caption. Our key contribution lies in building this `caption-conditioned' image encoding which tightly couples both the tasks and allows the weak supervision to effectively guide visual grounding. We provide an extensive empirical and qualitative analysis to investigate the different components of our proposed model and compare it with competitive baselines. For phrase localization, we report an improvement of 4.9% (absolute) over the prior state-of-the-art on the VisualGenome dataset. We also report results that are at par with the state-of-the-art on the downstream caption-to-image retrieval task on COCO and Flickr30k datasets.
Publisher
ICCV
November 20, 2024
Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra
November 20, 2024
November 19, 2024
Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin
November 19, 2024
November 14, 2024
Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si
November 14, 2024
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
Foundational models
Latest news
Foundational models