July 18, 2021
Direct Feedback Alignment (DFA) is emerging as an efficient and biologically plausible alternative to backpropagation for training deep neural networks. Despite relying on random feedback weights for the backward pass, DFA successfully trains state-of-the-art models such as Transformers. On the other hand, it notoriously fails to train convolutional networks. An understanding of the inner workings of DFA to explain these diverging results remains elusive. Here, we propose a theory of feedback alignment algorithms. We first show that learning in shallow networks proceeds in two steps: analignment phase, where the model adapts its weights to align the approximate gradient with the true gradient of the loss function, is followed by a memorisation phase, where the model focuses on fitting the data. This two-step process has a degeneracy breaking effect: out of all the low-loss solutions in the landscape, a net-work trained with DFA naturally converges to the solution which maximises gradient alignment. We also identify a key quantity underlying alignment in deep linear networks: the conditioning of the alignment matrices. The latter enables a detailed understanding of the impact of data structure on alignment, and suggests a simple explanation for the well-known failure of DFA to train convolutional neural networks. Numerical experiments on MNIST and CIFAR10 clearly demonstrate degeneracy breaking in deep non-linear networks and show that the align-then-memorize process occurs sequentially from the bottom layers of the network to the top.
Written by
Maria Refinetti
Stephane d’Ascoli
Ruben Ohana
Sebastian Goldt
Publisher
ICML 2021
Research Topics
Core Machine Learning
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 08, 2022
Ari Morcos, Shashank Shekhar, Surya Ganguli, Ben Sorscher, Robert Geirhos
November 08, 2022
August 08, 2022
Ashkan Yousefpour, Akash Bharadwaj, Alex Sablayrolles, Graham Cormode, Igor Shilov, Ilya Mironov, Jessica Zhao, John Nguyen, Karthik Prasad, Mani Malek, Sayan Ghosh
August 08, 2022
December 07, 2020
Avishek Joey Bose, Gauthier Gidel, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton
December 07, 2020
November 03, 2020
Rui Zhang, Hanghang Tong Yinglong Xia, Yada Zhu
November 03, 2020
Foundational models
Our approach
Latest news
Foundational models