ALA: Naturalness-aware Adversarial Lightness Attack

October 29, 2023


Most researchers have tried to enhance the robustness of DNNs by revealing and repairing the vulnerability of DNNs with specialized adversarial examples. Parts of the attack examples have imperceptible perturbations restricted by Lp norm. However, due to their high-frequency property, the adversarial examples can be defended by denoising methods and are hard to realize in the physical world. To avoid the defects, some works have proposed unrestricted attacks to gain better robustness and practicality. It is disappointing that these examples usually look unnatural and can alert the guards. In this paper, we propose Adversarial Lightness Attack (ALA), a white-box unrestricted adversarial attack that focuses on modifying the lightness of the images. The shape and color of the samples, which are crucial to human perception, are barely influenced. To obtain adversarial examples with a high attack success rate, we propose unconstrained enhancement in terms of the light and shade relationship in images. To enhance the naturalness of images, we craft the naturalness-aware regularization according to the range and distribution of light. The effectiveness of ALA is verified on two popular datasets for different tasks (i.e., ImageNet for image classification and Places-365 for scene recognition).

Download the Paper


Written by

Felix Xu

Geguang Pu

Jiayi Zhu

Jincao Feng

Liangru Sun

Qing Guo

Yang Liu

Yihao Huang


31st ACM International Conference on Multimedia (ACM-MM'23)

Research Topics

Computer Vision

Related Publications

March 20, 2024


SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model

Armen Avetisyan, Chris Xie, Henry Howard-Jenkins, Tsun-Yi Yang, Samir Aroudj, Suvam Patra, Fuyang Zhang, Duncan Frost, Luke Holland, Campbell Orme, Jakob Julian Engel, Edward Miller, Richard Newcombe, Vasileios Balntas

March 20, 2024

February 13, 2024



IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos

February 13, 2024

January 25, 2024


LRR: Language-Driven Resamplable Continuous Representation against Adversarial Tracking Attacks

Felix Xu, Di Lin, Jianjun Zhao, Jianlang Chen, Lei Ma, Qing Guo, Wei Feng, Xuhong Ren

January 25, 2024

December 08, 2023


Learning Fine-grained View-Invariant Representations from Unpaired Ego-Exo Videos via Temporal Alignment

Sherry Xue, Kristen Grauman

December 08, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.