October 29, 2023
Most researchers have tried to enhance the robustness of DNNs by revealing and repairing the vulnerability of DNNs with specialized adversarial examples. Parts of the attack examples have imperceptible perturbations restricted by Lp norm. However, due to their high-frequency property, the adversarial examples can be defended by denoising methods and are hard to realize in the physical world. To avoid the defects, some works have proposed unrestricted attacks to gain better robustness and practicality. It is disappointing that these examples usually look unnatural and can alert the guards. In this paper, we propose Adversarial Lightness Attack (ALA), a white-box unrestricted adversarial attack that focuses on modifying the lightness of the images. The shape and color of the samples, which are crucial to human perception, are barely influenced. To obtain adversarial examples with a high attack success rate, we propose unconstrained enhancement in terms of the light and shade relationship in images. To enhance the naturalness of images, we craft the naturalness-aware regularization according to the range and distribution of light. The effectiveness of ALA is verified on two popular datasets for different tasks (i.e., ImageNet for image classification and Places-365 for scene recognition).
Publisher
31st ACM International Conference on Multimedia (ACM-MM'23)
Research Topics
November 20, 2024
Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti
November 20, 2024
November 11, 2024
Sherry Xue, Romy Luo, Changan Chen, Kristen Grauman
November 11, 2024
October 31, 2024
Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra
October 31, 2024
October 16, 2024
Movie Gen Team
October 16, 2024
Foundational models
Latest news
Foundational models