RESEARCH

NLP

AIPNET: GENERATIVE ADVERSARIAL PRE-TRAINING OF ACCENT-INVARIANT NETWORK FOR END-TO-END SPEECH RECOGNITION

April 29, 2020

Abstract

As one of the major sources in speech variability, accents have posed a grand challenge to the robustness of speech recognition systems. In this paper, our goal is to build a unified end-to-end speech recognition system that generalizes well across accents. For this purpose, we propose a novel pre-training framework AIPNet based on generative adversarial nets (GAN) for accent-invariant representation learning: Accent Invariant Pre-training Networks. We pre-train AIPNet to disentangle accent-invariant and accent-specific characteristics from acoustic features through adversarial training on accented data for which transcriptions are not necessarily available. We further fine-tune AIPNet by connecting the accent-invariant module with an attention-based encoder-decoder model for multi-accent speech recognition. In the experiments, our approach is compared against four baselines including both accent-dependent and accent-independent models. Experimental results on 9 English accents show that the proposed approach outperforms all the baselines by 2.3 ~ 4.5% relative reduction on average WER when transcriptions are available in all accents and by 1.6~ 6.1% relative reduction when transcriptions are only available in US accent.

Download the Paper

AUTHORS

Written by

Zhaojun Yang

Ching-Feng Yeh

Mahaveer Jain

Mike Seltzer

Yi-Chen Chen

Publisher

ICASSP

Related Publications

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 19, 2024

NLP

Adaptive Decoding via Latent Preference Optimization

Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin

November 19, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.