RESEARCH

NLP

Adversarial Inference for Multi-Sentence Video Description

June 10, 2019

Abstract

While significant progress has been made in the image captioning task, video description is still in its infancy due to the complex nature of video data. Generating multi- sentence descriptions for long videos is even more challenging. Among the main issues are the fluency and coherence of the generated descriptions, and their relevance to the video. Recently, reinforcement and adversarial learning based methods have been explored to improve the image captioning models; however, both types of methods suffer from a number of issues, e.g. poor readability and high redundancy for RL and stability issues for GANs. In this work, we instead propose to apply adversarial techniques during inference, designing a discriminator which encourages better multi-sentence video description. In addition, we find that a multi-discriminator “hybrid” design, where each dis- criminator targets one aspect of a description, leads to the best results. Specifically, we decouple the discriminator to evaluate on three criteria: 1) visual relevance to the video, 2) language diversity and fluency, and 3) coherence across sentences. Our approach results in more accurate, diverse, and coherent multi-sentence video descriptions, as shown by automatic as well as human evaluation on the popular ActivityNet Captions dataset.

Download the Paper

AUTHORS

Written by

Marcus Rohrbach

Anna Rohrbach

Jae Sung Park

Trevor Darrell

Publisher

CVPR

Related Publications

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 19, 2024

NLP

Adaptive Decoding via Latent Preference Optimization

Shehzaad Dhuliawala, Ilia Kulikov, Ping Yu, Asli Celikyilmaz, Jason Weston, Sainbayar Sukhbaatar, Jack Lanchantin

November 19, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.