RESEARCH

CORE MACHINE LEARNING

Adversarial Example Games

December 03, 2020

Abstract

The existence of adversarial examples capable of fooling trained neural network classifiers calls for a much better understanding of possible attacks to guide the development of safeguards against them. This includes attack methods in the challenging non-interactive blackbox setting, where adversarial attacks are generated without any access, including queries, to the target model. Prior attacks in this setting have relied mainly on algorithmic innovations derived from empirical observations (e.g., that momentum helps), lacking principled transferability guarantees. In this work, we provide a theoretical foundation for crafting transferable adversarial examples to entire hypothesis classes. We introduce Adversarial Example Games (AEG), a framework that models the crafting of adversarial examples as a min-max game between a generator of attacks and a classifier. AEG provides a new way to design adversarial examples by adversarially training a generator and a classifier from a given hypothesis class (e.g., architecture). We prove that this game has an equilibrium, and that the optimal generator is able to craft adversarial examples that can attack any classifier from the corresponding hypothesis class. We demonstrate the efficacy of AEG on the MNIST and CIFAR-10 datasets, out- performing prior state-of-the-art approaches with an average relative improvement of 27.5% and 47.2% against undefended and robust models respectively.

Download the Paper

AUTHORS

Written by

Pascal Vincent

Hugo Berard

Andre Cianflone

Gauthier Gidel

Joey Bose

Simon Lacoste-Julien

Will Hamilton

Publisher

NeurIPS

Research Topics

Core Machine Learning

Related Publications

May 07, 2024

CORE MACHINE LEARNING

ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift

Hwanwoo Kim, Xin Zhang, Jiwei Zhao, Qinglong Tian

May 07, 2024

April 04, 2024

CORE MACHINE LEARNING

DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning

Jonathan Lebensold, Maziar Sanjabi, Pietro Astolfi, Adriana Romero Soriano, Kamalika Chaudhuri, Mike Rabbat, Chuan Guo

April 04, 2024

March 28, 2024

THEORY

CORE MACHINE LEARNING

On the Identifiability of Quantized Factors

Vitoria Barin Pacela, Kartik Ahuja, Simon Lacoste-Julien, Pascal Vincent

March 28, 2024

March 13, 2024

CORE MACHINE LEARNING

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, Yuandong Tian

March 13, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.