RESEARCH

CORE MACHINE LEARNING

Adversarial Example Games

December 03, 2020

Abstract

The existence of adversarial examples capable of fooling trained neural network classifiers calls for a much better understanding of possible attacks to guide the development of safeguards against them. This includes attack methods in the challenging non-interactive blackbox setting, where adversarial attacks are generated without any access, including queries, to the target model. Prior attacks in this setting have relied mainly on algorithmic innovations derived from empirical observations (e.g., that momentum helps), lacking principled transferability guarantees. In this work, we provide a theoretical foundation for crafting transferable adversarial examples to entire hypothesis classes. We introduce Adversarial Example Games (AEG), a framework that models the crafting of adversarial examples as a min-max game between a generator of attacks and a classifier. AEG provides a new way to design adversarial examples by adversarially training a generator and a classifier from a given hypothesis class (e.g., architecture). We prove that this game has an equilibrium, and that the optimal generator is able to craft adversarial examples that can attack any classifier from the corresponding hypothesis class. We demonstrate the efficacy of AEG on the MNIST and CIFAR-10 datasets, out- performing prior state-of-the-art approaches with an average relative improvement of 27.5% and 47.2% against undefended and robust models respectively.

Download the Paper

AUTHORS

Written by

Pascal Vincent

Hugo Berard

Andre Cianflone

Gauthier Gidel

Joey Bose

Simon Lacoste-Julien

Will Hamilton

Publisher

NeurIPS

Research Topics

Core Machine Learning

Related Publications

May 14, 2025

RESEARCH

CORE MACHINE LEARNING

UMA: A Family of Universal Models for Atoms

Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick

May 14, 2025

May 14, 2025

HUMAN & MACHINE INTELLIGENCE

SPEECH & AUDIO

Emergence of Language in the Developing Brain

Linnea Evanson, Christine Bulteau, Mathilde Chipaux, Georg Dorfmüller, Sarah Ferrand-Sorbets, Emmanuel Raffo, Sarah Rosenberg, Pierre Bourdillon, Jean Remi King

May 14, 2025

May 13, 2025

HUMAN & MACHINE INTELLIGENCE

RESEARCH

Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI

Marlène Careil, Yohann Benchetrit, Jean-Rémi King

May 13, 2025

April 25, 2025

RESEARCH

NLP

ReasonIR: Training Retrievers for Reasoning Tasks

Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer

April 25, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.