December 01, 2020
Contextual bandit algorithms are applied in a wide range of domains, from advertising to recommender systems, from clinical trials to education. In many of these domains, malicious agents may have incentives to attack the bandit algorithm to induce it to perform a desired behavior. For instance, an unscrupulous ad publisher may try to increase their own revenue at the expense of the advertisers; a seller may want to increase the exposure of their products, or thwart a competitor's advertising campaign. In this paper, we study several attack scenarios and show that a malicious agent can force a linear contextual bandit algorithm to pull any desired arm T−o(T) times over a horizon of T steps, while applying adversarial modifications to either rewards or contexts that only grow logarithmically as O(logT). We also investigate the case when a malicious agent is interested in affecting the behavior of the bandit algorithm in a single context (e.g., a specific user). We first provide sufficient conditions for the feasibility of the attack and we then propose an efficient algorithm to perform the attack. We validate our theoretical results on experiments performed on both synthetic and real-world datasets.
Written by
Evrard Garcelon
Alessandro Lazaric
Jean Tarbouriech
Laurent Meunier
Matteo Pirotta
Olivier Teytaud
Publisher
NeurIPS
November 06, 2024
Aaron Defazio, Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky
November 06, 2024
August 16, 2024
Zhihan Xiong, Maryam Fazel, Lin Xiao
August 16, 2024
July 08, 2024
Antonio Orvieto, Lin Xiao
July 08, 2024
March 28, 2024
Vitoria Barin Pacela, Kartik Ahuja, Simon Lacoste-Julien, Pascal Vincent
March 28, 2024
Foundational models
Latest news
Foundational models