CORE MACHINE LEARNING

Accelerating a Triton Fused Kernel for W4A16 Quantized Inference with SplitK Work Decomposition

January 09, 2024

Abstract

We propose an implementation of an efficient fused matrix multiplication kernel for W4A16 quantized inference, where we perform dequantization and GEMM in a fused kernel using a SplitK work decomposition. Our implementation shows improvement for the type of skinny matrix-matrix multiplications found in foundation model inference workloads. In particular, this paper surveys the type of matrix multiplication between a skinny activation matrix and a square weight matrix. Our results show an average of 65\% speed improvement on A100, and an average of 124\% speed improvement on H100 (with a peak of 295\%) for a range of matrix dimensions including those found in a llama-style model, where m < n = k.

Download the Paper

AUTHORS

Written by

Less Wright

Adnan Hoque

Publisher

arxiv.org

Research Topics

Core Machine Learning

Related Publications

December 18, 2024

CORE MACHINE LEARNING

UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling

Haider Al-Tahan, Quentin Garrido, Randall Balestriero, Diane Bouchacourt, Caner Hazirbas, Mark Ibrahim

December 18, 2024

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

CORE MACHINE LEARNING

SYSTEMS RESEARCH

Croissant: A Metadata Format for ML-Ready Datasets

Mubashara Akhtar, Omar Benjelloun, Costanza Conforti, Luca Foschini, Pieter Gijsbers, Joan Giner-Miguelez, Sujata Goswami, Nitisha Jain, Michalis Karamousadakis, Satyapriya Krishna, Michael Kuchnik, Sylvain Lesage, Quentin Lhoest, Pierre Marcenac, Manil Maskey, Peter Mattson, Luis Oala, Hamidah Oderinwale, Pierre Ruyssen, Tim Santos, Rajat Shinde, Elena Simperl, Arjun Suresh, Goeffry Thomas, Slava Tykhonov, Joaquin Vanschoren, Susheel Varma, Jos van der Velde, Steffen Vogler, Carole-Jean Wu, Luyao Zhang

December 12, 2024

December 10, 2024

CORE MACHINE LEARNING

Flow Matching Guide and Code

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky Chen, David Lopez-Paz, Heli Ben Hamu, Itai Gat

December 10, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.