CORE MACHINE LEARNING

Accelerating a Triton Fused Kernel for W4A16 Quantized Inference with SplitK Work Decomposition

January 09, 2024

Abstract

We propose an implementation of an efficient fused matrix multiplication kernel for W4A16 quantized inference, where we perform dequantization and GEMM in a fused kernel using a SplitK work decomposition. Our implementation shows improvement for the type of skinny matrix-matrix multiplications found in foundation model inference workloads. In particular, this paper surveys the type of matrix multiplication between a skinny activation matrix and a square weight matrix. Our results show an average of 65\% speed improvement on A100, and an average of 124\% speed improvement on H100 (with a peak of 295\%) for a range of matrix dimensions including those found in a llama-style model, where m < n = k.

Download the Paper

AUTHORS

Written by

Less Wright

Adnan Hoque

Publisher

arxiv.org

Research Topics

Core Machine Learning

Related Publications

November 20, 2024

NLP

CORE MACHINE LEARNING

Llama Guard 3-1B-INT4: Compact and Efficient Safeguard for Human-AI Conversations

Igor Fedorov, Kate Plawiak, Lemeng Wu, Tarek Elgamal, Naveen Suda, Eric Smith, Hongyuan Zhan, Jianfeng Chi, Yuriy Hulovatyy, Kimish Patel, Zechun Liu, Yangyang Shi, Tijmen Blankevoort, Mahesh Pasupuleti, Bilge Soran, Zacharie Delpierre Coudert, Rachad Alao, Raghuraman Krishnamoorthi, Vikas Chandra

November 20, 2024

November 14, 2024

NLP

CORE MACHINE LEARNING

A Survey on Deep Learning for Theorem Proving

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si

November 14, 2024

November 06, 2024

THEORY

CORE MACHINE LEARNING

The Road Less Scheduled

Aaron Defazio, Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky

November 06, 2024

August 16, 2024

THEORY

REINFORCEMENT LEARNING

Dual Approximation Policy Optimization

Zhihan Xiong, Maryam Fazel, Lin Xiao

August 16, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.