SPEECH & AUDIO

NLP

A Two-stage Approach to Speech Bandwidth Extension

August 30, 2021

Abstract

Algorithms for speech bandwidth extension (BWE) may work in either the time domain or the frequency domain. Time-domain methods often do not sufficiently recover the high-frequency content of speech signals; frequency-domain methods are better at recovering the spectral envelope, but have difficulty reconstructing the details of the waveform. In this paper, we propose a two-stage approach for BWE, which enjoys the advantages of both time- and frequency-domain methods. The first stage is a frequency-domain neural network, which predicts the high-frequency part of the wide-band spectrogram from the narrow-band input spectrogram. The wide-band spectrogram is then converted into a time-domain waveform, and passed through the second stage to refine the temporal details. For the first stage, we compare a convolutional recurrent network (CRN) with a temporal convolutional network (TCN), and find that the latter is able to capture long-span dependencies equally well as the former while using a lot fewer parameters. For the second stage, we enhance the Wave-U-Net architecture with a multi-resolution short-time Fourier transform (MSTFT) loss function. A series of comprehensive experiments show that the proposed system achieves superior performance in speech enhancement (measured by both time- and frequency-domain metrics) as well as speech recognition.

Download the Paper

AUTHORS

Written by

Yun Wang

Christian Fuegen

Didi Zhang

Gil Keren

Kaustubh Kalgaonkar

Ju Lin

Publisher

Interspeech

Related Publications

December 17, 2024

NLP

FLAME : Factuality-Aware Alignment for Large Language Models

Jack Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, Xilun Chen

December 17, 2024

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

NLP

Byte Latent Transformer: Patches Scale Better Than Tokens

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer

December 12, 2024

December 12, 2024

HUMAN & MACHINE INTELLIGENCE

NLP

Explore Theory-of-Mind: Program-Guided Adversarial Data Generation for Theory of Mind Reasoning

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz

December 12, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.