October 10, 2023
Standard Recurrent Neural Network Transducers (RNN-T) decoding algorithms for speech recognition are iterating over the time axis, such that one time step is decoded before moving on to the next time step. Those algorithms result in a large number of calls to the joint network, which were shown in previous work to be an important factor that reduces decoding speed. We present a decoding beam search algorithm that batches the joint network calls across a segment of time steps, which results in 20%-96% decoding speedups consistently across all models and settings experimented with. In addition, aggregating emission probabilities over a segment may be seen as a better approximation to finding the most likely model output, causing our algorithm to improve oracle word error rate by up to 11% relative as the segment size increases, and to slightly improve general word error rate.
October 16, 2024
Movie Gen Team
October 16, 2024
October 04, 2024
Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota
October 04, 2024
September 26, 2024
Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa
September 26, 2024
August 23, 2024
Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, Soujanya Poria
August 23, 2024
Foundational models
Latest news
Foundational models