SPEECH & AUDIO

A Token-Wise Beam Search Algorithm for RNN-T

October 10, 2023

Abstract

Standard Recurrent Neural Network Transducers (RNN-T) decoding algorithms for speech recognition are iterating over the time axis, such that one time step is decoded before moving on to the next time step. Those algorithms result in a large number of calls to the joint network, which were shown in previous work to be an important factor that reduces decoding speed. We present a decoding beam search algorithm that batches the joint network calls across a segment of time steps, which results in 20%-96% decoding speedups consistently across all models and settings experimented with. In addition, aggregating emission probabilities over a segment may be seen as a better approximation to finding the most likely model output, causing our algorithm to improve oracle word error rate by up to 11% relative as the segment size increases, and to slightly improve general word error rate.

Download the Paper

AUTHORS

Written by

Gil Keren

Publisher

ASRU 2023

Research Topics

Speech & Audio

Related Publications

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

September 26, 2024

SPEECH & AUDIO

NLP

Unveiling the Role of Pretraining in Direct Speech Translation

Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa

September 26, 2024

August 23, 2024

SPEECH & AUDIO

Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization

Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, Soujanya Poria

August 23, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.